Photogallery

The Scale of China’s Bitcoin Mining Rush could Undermine Its Carbon-Zero Goals

China’s electricity-guzzling Bitcoin mines, which power nearly 80 per cent of the world’s cryptocurrency trade, could undermine the country’s climate goals, according to a study published on Tuesday in the scientific journal Nature.
While the terminology cunjures up images of digging up precious minerals from a hole in the ground, mines from which Bitcoins are extracted are in fact sites full of microprocessors running to perform mathematical calculations.
These computers, which are the source of Bitcoins, consume huge amounts of electricity, some of it originating in one of more than a thousand coal-fired power plants across China.
According to the Nature study, if left unchecked, China’s Bitcoin mines will produce 130.50 million metric tons of carbon dioxide emissions by 2024, nearly equivalent to the total annual greenhouse gas emissions of Italy or Saudi Arabia.
As of April 2020, Chinese companies with access to cheap electricity and equipment were running 78.89 per cent of the world’s bitcoin operations, according to Nature.
About 40 per cent of China’s Bitcoin mines are powered by coal-fired electricity, while the rest use renewable energy, the study said.
But these coal-intensive facilities are so large that they could end up undermining Beijing’s environmental commitment to peak carbon emissions by 2030 and become carbon neutral by 2060, the study warns.
Undermining efforts to reduce emissions
“The intensive exploitation of bitcoin in China can quickly become a threat that could potentially undermine the effort to reduce emissions,” Wang Shouyang, a co-author of the study from the Chinese Academy of Sciences, told AFP.
He said the Chinese government should focus on upgrading the power grid to ensure a stable supply from renewable sources.
“As energy prices in China’s clean energy regions are lower than those in coal-fired regions, ‘miners’ – who run their computer hardware to perform mathematical calculations and participate in the network, with the aim of receiving a reward in Bitcoin – should have more incentive to move to clean energy regions,” he added.
This year, the Bitcoin mining industry is expected to consume 0.6 percent of the world’s total electricity production, more than Norway needs annually, according to the University of Cambridge’s Bitcoin Electricity Consumption Index.
The price of bitcoin has risen fivefold in the past year, reaching a record high of more than $61,000 (€70,000) in March, and is now hovering just below the $60,000 (€69,000) mark.
Given the profits that can be made, Wang believes that imposing carbon taxes is not enough to deter miners.
In 2019, China banned trading in cryptocurrencies to combat money laundering. But Bitcoin “mining” is still permitted.

Hydrogen Production Is a ‘Climate Killer’

The production of hydrogen today is a “climate killer” according to Carlo Zorzoli of Enel Green Power.
He said some “98% of it is produced from steam reforming and gasification, which equates to yearly carbon emissions comparable to that of Indonesia and the UK combined. Just 2% is produced from electrolysis.”
“Today, hydrogen is anything but clean. That 98% produced today is an industrial feedstock. Just 2% is produced from electrolysis.”
“Hydrogen today is not a solution to decarbonisation: hydrogen is a part of the problem. So the very first thing to do is convert grey hydrogen to green.”
Zorzoli, who is head of business development at Enel Green Power, was speaking in an Enlit Europe webcast titled ‘Scaling up renewables for smart electrification and carbon neutrality’, in which he stressed Enel’s belief that “electrification is by far the cheapest and simplest way to decarbonise our economies”.
But he acknowledged that “of course you cannot electrify everything – and so there is a need for something to complement electrification. And green hydrogen is definitely a complement.”
And to make it ‘green’, he said it was a priority for the energy sector to bring down the cost of electrolysers.
“Because the future for the not-electrifiable sector relies mostly on hydrogen or hydrogen-based vectors. We need to focus on making green hydrogen cheaper.”
He said Europe’s road to decarbonisation was “a big task we’re on” and added that Enel Green Power had orgainised its sustainable business model around four major trends: decarbonisation, electrification; digitalisation; and new customer needs.
In addressing a question around what needed to change to speed up a greater deployment of renewables, he said: “We see a slow permitting process – and a lack of capability to deliver enough permits. We definitely have a problem – there is an issue of timing with permits and, in my view, permitting in most countries is a bottleneck.”

Chevron Launches $300m Fund to Focus on Low-Carbon Technology

Chevron Corp on Thursday said it had launched a $300 million fund focused on low-carbon technology, as traditional global oil and gas firms attempt to invest more in green energy and tackle climate change.
Major energy firms have set targets to reduce greenhouse gas emissions or are exploring investments in renewable energy and green technology amid rising pressure from investors and activists.
Earlier this month, top U.S. oil producer Exxon Mobil Corp unveiled a carbon-removal technology venture that would directly compete with Occidental Petroleum Corp’s efforts to develop the largest ever facility to pull carbon dioxide out of the atmosphere.
Chevron Technology Ventures, the venture capital division of the company, launched the first Future Energy Fund in 2018 and has invested in more than 10 companies in the field that focus on carbon capture and energy storage.
Last month, Chevron invested in Blue Planet Systems Corp, a startup commercializing a technology that makes a substitute for limestone in concrete and building materials from carbon dioxide.
The oil major in October also formed a joint venture to market dairy biomethane, a renewable natural gas made of methane emissions from cattle burps as part of its push to reduce emissions.

China’s Emissions of Ozone-Harming Gas Are Declining, Studies Find

Emissions from China of a banned gas that harms Earth’s ozone layer have sharply declined after increasing for several years, two teams of scientists said Wednesday, a sign that the Beijing government had made good on vows to crack down on illegal production of the industrial chemical.
The findings ease concerns that increased emissions of the gas, CFC-11, would slow progress in the decades-long environmental struggle to repair the ozone layer, which filters ultraviolet radiation from the sun that can cause skin cancer and damage crops.
“We see a huge decline both in global emission rates and what’s coming from Eastern China,” said Stephen A. Montzka, a research chemist with the National Oceanic and Atmospheric Administration and the lead author of one of the studies. Work by Dr. Montzka and others three years ago first revealed the illegal emissions.
“It looks like there’s been a substantial response, potentially as a result of us raising a flag and saying, ‘Hey, something’s not happening as it should,’” Dr. Montzka said.
Matthew Rigby, an atmospheric chemist at the University of Bristol in England and an author of the second study, said that if emissions had not declined, “we could be seeing a delay in ozone recovery of years.” As of now, full recovery is still expected by the middle of the century.
Chinese government officials did not immediately respond to requests for comment.
Chemical traders in Shandong, a heavily industrialized province in Eastern China where CFC-11 was widely used for making insulating foams, said trade in the banned gas had largely dried up. “It hasn’t disappeared entirely, but it’s much scarcer than before,” Gao Shang, a chemical merchant in Shandong, said in a telephone interview.
CFC-11 was outlawed a decade ago under the Montreal Protocol, the treaty established in the 1980s, when research revealed its effects on atmospheric ozone, along with the effects of similar widely used chemicals.
The revelation in a 2018 study of rogue emissions from China that began five years before was a shock to scientists, policymakers, environmentalists and others who monitor the protocol, which is largely regarded as the most effective environmental treaty in history.
Meg Seki, acting executive secretary of the Ozone Secretariat, the United Nations body that administers the treaty, said the organization was pleased to see that emissions had dropped and that the effect on the ozone layer was likely to be limited. “It is important, however, to prevent such unexpected emissions in the future through continued, high-standard monitoring by the scientific community,” she said in a statement.
The 2018 research did not pinpoint the source of most of the emissions beyond locating them as coming from East Asia. But investigations that year by the Environmental Investigation Agency, an independent advocacy group based in Washington, D.C., and by The New York Times found evidence that the gas was still being produced and used in Eastern China, particularly Shandong.
An atmospheric analysis led by Dr. Rigby in 2019 found that Shandong, as well as a neighboring province, Hebei, were major sources.
When first confronted with the evidence, Chinese environmental authorities hedged and raised doubts about the findings, suggesting that there could be other, unaccounted sources of the chemical or that manufacturers of insulating foam would not use so much CFC-11.
At the same time, China’s Ministry of Ecology and Environmental Protection vowed “zero tolerance” for businesses found illegally making or using CFC-11.
Policy announcements, industry reports and court judgments all indicate that the Chinese government cracked down on the illicit trade, even as it kept denying that there ever was a serious problem. Last year, the government publicized a conviction of a businessman, Qi Erming, as the first case in China of a criminal prosecution for illegally trading in ozone-damaging chemicals.
As well as prosecutions, the government tightened rules and monitoring of the chemical and foam production industries, and promised to create a comprehensive data system to trace the movement of chemicals that could be used to make CFC-11.
There are legal gases that can replace CFC-11 in foam production. Mr. Gao, the chemical merchant in Shandong, said his company specializes in one of them.
The availability of substitutes may have helped China’s efforts to reduce CFC-11 emissions. Zhu Xiuli, a sales manager at another company in Shandong that sells foaming agents, said that customers previously had asked whether they had CFC-11. But “in the past couple of years there have been fewer and fewer inquiries,” she said.
CFC-11 has also been used in refrigeration equipment. As the gear ages, and as foams containing CFC-11 degrade over time, the gas will slowly be released. Although the size of this “bank” of CFC-11 is not precisely known, it is accounted for by the protocol, and is one reason full ozone recovery will take decades.
The new papers, which were published in the journal Nature, also do not account for the entire global increase in CFC-11 emissions that had occurred since 2013. The gas may still be being produced or used in other countries or in other parts of China, but the researchers said there are not enough air-sampling stations worldwide to know for certain.
“This is a useful lesson that we really need to expand our monitoring capabilities,” Dr. Rigby said.
Avipsa Mahapatra, a climate campaign lead for the Environmental Investigation Agency, said of the new findings that it was “exciting to see atmospheric studies confirming that on-the-ground intelligence and subsequent enforcement have culminated in a spectacular climate win.” But she said her group had indications that enforcement may have been more successful in some parts of China than others. “This is not the time for complacency,” she said.
Susan Solomon, an atmospheric chemist at the Massachusetts Institute of Technology who was not involved in the research, said the work was “a real triumph for science.”
But the problem is not over, Dr. Solomon said, because in addition to CFC-11, there are other, similar chemicals being emitted. “There’s a whole zoo of molecules,” she said, and although the amounts are smaller, they add up.
They also are potent greenhouse gases, she said, although their contribution to warming is much less than the far more prevalent heat-trapping gases like carbon dioxide and methane. “The chemical industry worldwide is still not monitored closely enough for us to actually be confident in how much greenhouse gases they’re making and how much ozone-depleting gases they are making,” she said.

IEA Debuts Scenario for Net Zero Emissions in 2050

In its World Energy Outlook 2020, released in November 2020, the International Energy Agency (IEA) for the first time added a scenario in which the world’s energy sector would achieve net-zero emissions by 2050, as it underscored the importance of bringing the world’s carbon emissions under control.
Compared to IEA’s base case of a global recovery from Covid-19 by the end of 2021 and maintenance of national emissions goals (but no new goals), the Net Zero Emissions by 2050 (NZE2050) scenario would accelerate energy efficiency measures and installation of solar and photovoltaic power generation. NZE2050 also includes acceleration of energy efficiency programs and equity investments, such as universal substitution of cooking with biomass with propane or electricity.
“Primary energy demand in the NZE2050 falls by 17% between 2019 and 2030, to a level similar to 2006, even though the global economy is twice as large. Electrification, efficiency gains and behaviour changes are central to achieving this. Coal demand falls by almost 60% over this period to a level last seen in the 1970s,” IEA said.
NZE2050 takes the SDS’s modeling of about 26.7 Gigatons (Gt) of CO2 emissions in 2030, and then asks how this can be reduced to 20.1 Gt, which is the midpoint of the Intergovernmental Panel on Climate Change’s estimate of the level of emissions that could enable the world to limit global warming to 1.5oC. This reduction would start the path towards zero net emissions in 2050.
Electrification drives the change. “The rapid reduction of emissions from electricity generation in the NZE2050 is critical because electrification based on low-emission electricity is one of the key mechanisms to reduce emissions in end-use sectors. These emissions reductions therefore occur against the backdrop of expanding electricity demand. Globally, electricity demand grows by around 400 terawatt-hours (TWh) each year on average to 2030, or 1.6% a year. This is equivalent to adding the current electricity demand of India, the fourth-largest global electricity market, to the power mix every three years,” IEA said.
To meet demand, worldwide annual solar PV additions would grow from about 110 GW in 2019 to 500 GW in 2030 and would leave renewables generating about 60% of power in 2030, compared to 27% today. This would enable unprecedent growth in actual renewable power generation, from a record 440 TWh in 2018 to 1,100 TWh per year.
Those changes would drive down CO2 emissions from the power sector by 60% from 2019 through 2030. For context, IEA noted that the only recent example of a country’s power sector reducing emissions at that pace is the UK during the period of 2008 to 2018.
Ambitious
NZE2050 is very ambitious. The investment by the power sector would be immense: $2.2 trillion per year by 2030, with about one-third of that on strengthening and expanding the power grid. For comparison, global power sector investment in 2019 was $760 billion.
“Realising the pace and scale of emissions reductions in the NZE2050 would require a far-reaching set of actions going above and beyond the already ambitious measures in the SDS. A large number of unparalleled changes across all parts of the energy sector would need to be realised simultaneously, at a time when the world is trying to recover from the Covid-19 pandemic,” IEA said.
In addition to shifts in power generation, another key element would be reduction in power demand. This would include 50% of new passenger cars in 2030 being electric, compared to 2.5% today. IEA notes that EV engines are fie times more efficient than internal combustion engines, which will further improve global energy efficiency.
Other measures would include retrofitting buildings to make them more energy efficient; use of electric heat pump systems in 100 million or more residences; mandating the use of ultra-efficient air conditioners; and electrification of one-third of low-temperature heating in industrial settings. IEA also forecasts that “green” hydrogen (hydrogen made through processes that do not generate carbon emissions) and other clean fuels would represent about 25% of the fuels mix.
Comparison to IPCC
IEA noted that the IPCC has created more than 90 forecasts of how the world can reach at least a 50% chance of limiting global warming to 1.5oC by 2100. In many ways, NZE2050 is more aggressive in renewables investments and more conservative about nuclear power and carbon capture than IPCC’s 1.5oC scenario:
• NZE2050 assumes a higher population and higher economic growth (both of which increase energy demand).
• NZE2050 forecasts a 10% lower energy intensity level for electricity generation.
• IPCC’s scenarios generally assume much higher growth in nuclear power than NZE2050’s 36% through 2030.
• NZE2050 generally assumes higher growth in renewables to 60% of global energy supply and lower use of oil and coal. NZE2050 forecasts global oil demand will fall from 98 million barrels per day (MMb/d) in 2019 to 65 MMb/d in 2030.
• IPCC generally assumes greater use of carbon capture and utilization technology.

Global Coal Demand to Rise 2.6% in 2021 after Record Decline This Year

Global demand for coal is set to jump 2.6% next year after a record pandemic-led drop this year, as recovering economic activity will lift use for electricity and industrial output, the International Energy Agency (IEA) said on Friday.

Demand for thermal and metallurgical coal should rise to 7,432 million tonnes in 2021, from 7,243 million tonnes this year, the Paris-based agency said in its Coal 2020 report.

Global coal demand fell by 5% this year as the impact of the pandemic curbed usage, IEA said.

Between 2018 and 2020, global coal demand will have fallen by an unprecedented 7%, or 500 million tonnes, the agency said, due to the pandemic and as countries around the world seek to shift to cleaner sources of energy.
“Before the pandemic, we expected a small rebound in coal demand in 2020, but we have since witnessed the largest drop in coal consumption since the Second World War,” IEA’s director of energy markets and security, Keisuke Sadamori, said in a statement.

While even the United States and Europe could see their first increases in coal consumption in nearly a decade next year, demand in 2021 would still trail 2019 levels and the IEA expected coal use to flatten out by 2025 at around 7.4 billion tonnes.
Renewables would likely surpass coal as the largest global source of electricity by 2025, while natural gas would take coal’s place as the second largest primary energy source after oil, Sadamori said.

“But with coal demand still expected to remain steady or to grow in key Asian economies, there is no sign that coal is going to fade away quickly,” he added, with key Asian markets accounting for 75% of global coal demand.
Coal is a key driver of CO2 emissions and governments around the globe have pledged carbon neutrality in the next decades, including China, which has set its target for before 2060.

The IEA said it would need to review its 2025 coal demand forecast, once the Chinese government releases its economic plans for 2021-2025, due in March.

Japan Greenhouse Gas Emissions Fall in FY2019 for 6th Straight Year

Japan’s greenhouse gas emissions fell in fiscal 2019 for the sixth straight year to reach their lowest level since comparable data became available in fiscal 1990, partly due to the impact of the U.S.-China trade dispute, the Environment Ministry said Tuesday.
The equivalent of 1,213 million tons of carbon dioxide was emitted in the year through March 2020, down 2.7 percent from a year earlier to rewrite the previous low recorded in fiscal 2018, according to preliminary data.
The ministry attributed the drop to declines in production in the steel and other industries affected by the U.S.-China trade war, and expansions of renewable energy.
Under the 2015 Paris Agreement on climate change, Japan aims to slash greenhouse gas emissions by 26 percent in fiscal 2030 compared with fiscal 2013.
With total emissions falling 14 percent in fiscal 2019 from fiscal 2013, the ministry believes the reduction target is attainable if the current pace of decline in greenhouse gas emissions continues.
However, the ministry thinks Japan cannot achieve its longer-term goal of cutting emissions to zero on a net basis by 2050 “unless all sorts of measures are taken.”
There have been calls for steps such as raising the fiscal 2030 emissions-cut target in order to meet the longer-term goal, which is on a par with pledges by other economies including the European Union and Britain.
Prime Minister Yoshihide Suga has pledged to establish a fund of 2 trillion yen ($19.2 billion) for firms developing green technologies as part of efforts to achieve carbon neutrality by 2050 and spur economic growth.
In fiscal 2019, electricity consumption by Japan’s steel and machinery industries fell along with a decline in their exports to China, affected by trade disputes between the world’s two largest economies.
Meanwhile, the share of electricity generated in Japan using renewable sources rose to 18 percent on the back of an increase in solar power.
Nuclear power generation accounted for just 6 percent as many nuclear plants remained offline under stricter safety regulations implemented after the 2011 Fukushima nuclear disaster triggered by a massive earthquake and tsunami.
The ministry said emissions in fiscal 2019 saw almost no impact from the coronavirus outbreak, but called for the need to monitor the situation.

China’s CO2 Emissions will be Higher in 2020 than in 2019

China’s greenhouse gas emissions will increase in 2020 compared to 2019 as they have rebounded after the COVID-19 outbreak, the head of the International Energy Agency said on Wednesday.
“As of today, Chinese emissions this year, 2020, will be higher than in 2019, they rebounded,” Fatih Birol told a digital energy conference organised by Norwegian oil firm Equinor.

Norway’s Equinor Aims for Net Zero Emissions by 2050

Norway’s Equinor aims to become a net zero emitter of greenhouse gases by 2050, including emissions from the production and final consumption of oil and gas, the energy producer’s new chief executive said as he took office on Monday.
Anders Opedal, the first engineer to lead state-controlled Equinor, plans to expand the company’s acquisition of acreage for wind power. He said achieving net zero emissions would require carbon capture and storage (CCS), so-called natural sinks and the use of technologies to produce hydrogen.
“We are ready to further strengthen our climate ambitions, aiming to reach net zero by 2050,” Opedal, who replaces Eldar Saetre, said in a statement.
The new CEO also repeated the company’s long-held ambition of increasing oil and gas output by 3% per year in 2019-2026.
Oil firms have set varying goals for cutting so-called Scope 1, 2 and 3 emissions. Scope 1 emissions come from oil and gas production, Scope 2 covers emission from energy purchased and Scope 3 covers the supply chain and final consumption.
For Scope 1 and 2 greenhouse gases, Equinor’s net zero ambition covers all emissions from its operations, while for Scope 3 greenhouse gases the net zero ambition is limited to the company’s actual stake in any field or operation.
“Equinor is preparing for an expected gradual decline in global demand for oil and gas from around 2030 onwards … In the longer term, Equinor expects to produce less oil and gas than today,” the company said.
“Equinor also assumes that an increasing share of oil and gas will be used for petrochemicals towards 2050,” it added.
Opedal plans to present an updated strategy for the company in June of 2021, Equinor said.

Oil Industry is Waging Price War against Recycled Plastics amid Pandemic Demand Boom

With the coronavirus pandemic fuelling the demand for plastics, from face shields to packaging used for online shopping deliveries, oil industry players are taking advantage and starting a price war between new plastics that they manufacture against recycled plastics. Across the world, statistics are also showing that recyclers are losing the battle too, putting the little hope left of solving the world’s mounting waste crisis and climate emergency into serious doubt.
Speaking to Reuters earlier this month, Steve Wong, CEO of Hong Kong-based Fukutomi Recycling and chairman of the China Scrap Plastics Association said that in the wake of the oil industry’s slashed prices for new petroleum-based plastics, many recyclers are struggling and “don’t see a light at the end of the tunnel”.
Compared to new plastics, recycled plastics – even the most commonly recycled plastic materials such as PET bottles – are now 83% to 93% costlier, according to market research conducted by the Independent Commodity Intelligence Services (ICIS). Prior to the pandemic, prices for new plastics stood at around half compared to their recycled counterparts.
And with the coronavirus and growing electrification of vehicles reducing the global demand for fossil fuels from industrial operations, the oil and gas industry has decided to embark on a plan to shift more of their focus on virgin plastic production. A study by think tank Carbon Tracker recently found that the dirty energy industry is now looking to spend as much as US$400 billion over the next five years on enormous plants to make new raw plastic materials.
The consequences of rising virgin plastic production extends beyond exacerbating the planet’s already dire outlook in terms of plastic pollution and waste crisis. Scientists have previously predicted that we would still be looking at 710 million tonnes of plastic waste left littering oceans and landfills by 2040 even if we significantly reduced plastic use.
It’s also going to mean far more greenhouse gas emissions entering the atmosphere, further driving climate change and putting hopes of keeping temperatures 1.5 degrees celsius above pre-industrial levels as outlined under the Paris agreement into serious doubt.
Based on a study by the beverage industry, the World Economic Forum (WEF) estimates that the manufacturing of just four new plastic bottles alone would release the equivalent carbon emissions of driving a mile in a car.
On top of investing more into virgin plastic manufacturing, dirty energy companies are shirking on their waste-reduction responsibilities too, literally adding more fuel to the fire when it comes to environmental degradation. In a survey conducted by Reuters, only a handful of the 12 biggest oil and chemical corporations in the world have provided any details of how they would invest in tackling waste.
Describing these moves as “quite concerning”, Lisa Beauvilain, the head of sustainability at Impax Asset Management told Reuters that this trend could completely overwhelm developing countries who are often at the forefront of handling the world’s trash, especially since China’s outright ban on plastic waste imports.
“We are literally drowning in plastics,” she said.
Meanwhile, recyclers are finding it hard to survive, with business shrinking by as much as 60% in the U.S. and 50% in parts of Asia-Pacific. Some have also seen their operations halted due to social distancing restrictions, including in the Philippines, Vietnam and India, where 80% of the industry were shut down at the height of the coronavirus pandemic.
“The combination of the impact of COVID-19 and low oil prices is like a double whammy,” explained Rob Kaplan, CEO of Circulate Capital, a Singapore-based investment firm dedicated to financing solutions for ocean pollution. “We’re seeing massive disruption.”
At a crucial juncture in global affairs that has seen a number of right-wing groups stoking unfounded fears about reusable bags and successfully dismantling single-use plastic bans in several U.S. states and cities, what seems like the oil industry’s win against recyclers is a huge blow for anti-plastic efforts.
It is vital now more than ever before that consumers do what they can to adopt reusables as much as possible. A few weeks ago, top scientists and experts reiterated that reusable items do not pose a higher risk of transmission and are perfectly safe for use during the crisis.